Thursday, February 28, 2008

Control Over Experiments - Analysis

Another hint about the defects of physics can be found in its reliance on the reasoning technique called "analysis." Analysis means that you solve problems by breaking them into pieces, and then handle the pieces one by one, or perhaps even break the pieces into smaller pieces, and so on. This approach is a key reasoning skill: any time you make a list you are probably performing analysis, and any time you count a group of things you have probably already done some analysis. What is strange is that physics relies so heavily, almost exclusively, on analysis. When trying to understand an object, material, phenomenon, etc., we start by trying to figure out what are its pieces and the rules governing their movements, and then based on the pieces we begin to reason about the behavior of the whole. For example, the solar system is conveniently broken into planets, asteroids, and the sun. Ceramics and metals may be understood as crystals packed against each other, or as large collections of atoms. Animals can be broken into collections of muscles, bones, and organs, or alternatively into cells, or alternatively into the building blocks of cells including the nucleus, DNA, cell wall, cell skeleton, etc. And any material as well as any force can be understood as "particles" - electrons, photons, gluons, quarks, etc. This sort of breaking things down - analysis - is always the starting point for physics. We will see later in this blog that matter and forces are not the only things physicists like to analyze - we also want to take apart time, space, and anything else we can think of. This attitude carries over into all of modern society; for instance analysis is at the root of how our workplace is organized, with many different specialties and degrees and professions and experts, so that one person knows how to solve one sort of problem and another person knows another sort of problem, and the general hope is that if we have enough specialists and if we train and pay them well enough then everything will come together into a great society.

Of course analysis has its limits. It's only one tool in the human toolbox. Almost every human activity, intellectual or not, involves breathtaking leaps far beyond the reaches of analysis. Following a path through the woods, writing a paragraph, figuring out whether a stranger is a friend or an enemy, tying your shoe, judging the beauty of a landscape, finding a concord with others, learning new ways of thinking - these may involve some element of analysis, some thinking about pieces and lists - but they go far beyond what analysis can do by itself. For instance, we are able to perceive a whole object, and make judgements about it, without consciously thinking about its pieces, and often enough we don't even know its parts. And organizations and societies based purely on specialization wouldn't get very far either - we all know where that would go: a lot of passing the buck when a problem doesn't fit into any particular specialist's competency, or when a new problem comes up, a lot of stereotyping, lack of humanity and compassion, bureaucrats not leaders, people falling through the cracks, and both big and small crimes against human dignity. The only way that our society functions is because a lot of people step outside of narrowly defined roles and let the buck stop with them: most importantly parents all of whom are jacks-of-all-trades for their children and and spouses, but also people in the workplace who do what it takes to make things work, secretaries who fill in wherever the specialists don't, those who truly innovate, those in politics who are truly not satisfied with the status quo.

What I'm saying is that analysis, by itself, gives a very incomplete vision of life and a very limited ability to understand or adapt to it. While physics doesn't rely exclusively on analysis, it is so focused on a component-wise view of the world that its vision is skewed substantially, and many things are just outside of physics' possibilities - for instance questions like communication between persons, beauty, ethics, etc. Consider the knowledge you might get by smashing a vase on the ground and looking at the fragments. That's a whole different ball game than what you will learn from looking at the vase's beauty, or its symbolism, or the functional experience of using the vase, or considering its place in artistic history, or in the culture, or as an expression of the particular artist. Not to mention just looking at the vase, touching it, smelling it. The knowlege physics gives us is often a lot more like the knowledge obtained by smashing the vase than like any of the others.


Analyzing something implies that you have a lot of power over it. You are taking it apart, either mentally, or in real life. Something that you can take apart is very much at your mercy. Moreover it is not your equal; it is subject to to you, and does not receive your full respect. You probably feel free to manipulate, modify, use, and discard it as you wish. For instance, if have an egg, you may wish to separate the yolk from the egg white and perhaps throw one away, or scramble them together, or leave them as is. Similarly, if you take an analytic approach to the earth then you may wish to dig up certain "valuable" parts of it, often destroying much more in the process. Even with human beings an analytic approach - whether in terms of organs and arteries and hormones, or in terms of psychological drives and hangups and instincts - is always accompanied by temptations to disrespect, toward forgetting that the person in front of you is far more than you could ever begin to discover by these analytical approaches. You may begin to think that you know more about the person you're analyzing than they do themselves, or that you should "fix" them, or find yourself reluctant to take to heart their opinions about yourself or others, their recommendations to you, and their wishes even about their own lives.

In other words, analysis is an inherently aggressive kind of reasoning, that runs hand in hand with power and control. Even the words that define analysis are telling: dividing something up, pieces, parts, taking something apart, breaking it apart, etc. All of these phrases have connotations of control, power, division, even destruction. If analysis is actually carried out physically then the object being analyzed ceases to exist for the duration of the analytic procedure. If we do not or can not put it back together then the analysis was the same as destruction. The sort of knowledge that can only be bought at the price destroying the thing known is very strange indeed. Have we really learned anything about the object that was destroyed?

As a matter of fact physics experiments often do destroy the things being measured. We need only think of the accelerators and colliders used to study high energy particle physics - the whole point of these experimental devices is to destroy atomic nuclei by hitting them with various things, and then see what fragments come out of the collision. This is physics' main way of finding out about atomic nuclei, and it involves the total destruction of the nuclei concerned.

While the collision experiments of particle physics are the natural end point of the analytic method, there are many other experimental techniques that cause permanent alterations to the thing being studied. Many observation techniques are based on throwing things at the object under study (this is called bombardment, another aggressive word) and seeing what happens. In some experiments the typical outcome is only that what is thrown just bounces off and you learn from how it bounces - this is what happens when you look through a microscope: you are seeing light that has bounced off of the thing you're studying. However in quite a few other experiments the bombardment process breaks things off of the thing under study, or makes cracks and other defects in it, etc, and then you learn from the debris and defects. Still other experiments take apart methodically the object under study rather than colliding it. Or perhaps a piece is removed (added, substituted) from the studied object, and then you observe changes in its behavior. In all these cases knowledge is obtained only at the cost of substantially changing or even destroying the object of study.

The physicist's theoretical understanding of nature always involves an analysis of things into their components, and physics experiments often are also analytical, even destroying the thing under study. While analysis is an important tool for solving problems and understanding things, it is particularly aggressive, based on our power to manipulate, and often ending in the destruction of the thing being analyzed. Analysis dovetails very well with physics' passion for experimental control, for being able to get nature to do the same thing, over and over again, on demand. Like magicians we are interested in power over nature, but unlike them we want only the power that works on demand for anyone who does the right manipulations. This focus on total control and power means that we who drink from the well of natural philosophy drink tainted water. We really need the water from that well, but unless we carefully watch and control its side effects, we should not be surprised by when we fall sick. The seeds of the abuses and horrors of this age, especially of destruction of the environment and manipulation of human beings, are part and parcel of natural philosophy.

No comments: